Images
Formula: CaFe2+Si2O6
Inosilicate (chain silicate), clinopyroxene, forms a series with
johannsenite and with diopside
Specific gravity: 3.5 to 3.6
Hardness: 5 - 6
Streak: Greenish, brownish, grey, also colourless
Colour: Dark green, greenish black, brownish black, black
Solubility: Insoluble in hydrochloric, sulphuric and nitric acid
Common impurities: Mn,Zn,Ti,Al,Mg,Na,K
Environments:
Plutonic igneous environments
Metamorphic environments
Hedenbergite is common in iron-rich metamorphic rocks, such as skarn, in alkaline
granite and as xenoliths in
kimberlite.
Localities
The Two Mile and Three Mile deposits, Paddy's River, Paddys River District, Australian Capital Territory, Australia,
are skarn deposits at the contact between
granodiorite and volcanic rocks.
Hedenbergite is a common primary silicate here, occurring
with magnetite and quartz, in or
adjacent to magnetite-rich skarn
(AJM 22.1.35).
At the Verkhnii Mine, Dalnegorsk, Dalnegorsk Urban District, Primorsky Krai, Russia, hedenbergite occurs on
limestone
(FM). Also at Dalnegorsk, hedenbergite pseudomorphs after
ilvaite have been found
(KL p229).
Alteration
aenigmatite, anorthite
and O2 to hedenbergite, albite,
ilmenite and magnetite
½Na4[Fe2+10Ti2]O4[Si12O36] +
CaAl2Si2O8 + ½O2 = CaFe2+Si2O6 +
2NaAlSi3O8 + Fe2+Ti4+O3 +
Fe2+Fe3+2O4
(DHZ 2A p651)
ankerite-dolomite and
quartz to diopside-hedenbergite
and CO2
Ca(Fe,Mg)(CO3)2 + 2SiO2 = Ca(Fe,Mg)Si2O6 + 2CO2
(DHZ 2A p274)
calcium amphibole, calcite and
quartz to diopside-hedenbergite,
anorthite, CO2 and H2O
Ca2(Mg,Fe2+)3Al4Si6O22(OH)2 +
3CaCO3 + 4SiO2 = 3Ca(Fe,Mg)Si2O6 +
2Ca(Al2Si2O8) + 3CO2 + H2O
Diopside-hedenbergite occurs commonly in regionally metamorphosed calcium-rich sediments and basic igneous rocks
belonging to the higher grades of the amphibolite facies, where it may form according to the above reaction
(DHZ 2A p272).
calcium amphibole, grossular and
quartz to diopside-
hedenbergite, anorthite,
pyrope-almandine and H2O
2Ca2(Mg,Fe2+)3Al4Si6O22(OH)2 +
Ca3Al2(SiO4)3 + SiO2 = 3Ca(Fe,Mg)Si2O6 +
4Ca(Al2Si2O8) +
(Mg,Fe2+)3Al2(SiO4)3 + 2H2O
Diopside-hedenbergite occurs commonly in regionally metamorphosed calcium-rich sediments and basic igneous rocks
belonging to the higher grades of the amphibolite facies, where it may form according to the above reaction
(DHZ 2A p272).
Fe-rich cordierite and diopside-
hedenbergite to enstatite-
ferrosilite, anorthite and
quartz
(Mg,Fe)2 Al4Si5O18 + 2Ca(Mg,Fe)Si2O6 =
4(Mg,Fe2+)SiO3 + 2Ca(Al2Si2O8) + SiO2
(DHZ 2A p126)
diopside-hedenbergite and CO2 to
enstatite-ferrosilite,
calcite and quartz
Ca(Mg,Fe)Si2O6 + CO2 → (Mg,Fe2+)SiO3 + CaCO3 +
SiO2
(DHZ 2A p136)
enstatite-ferrosilite,
diopside-hedenbergite, albite,
anorthite and H2O to
amphibole and quartz
3(Mg,Fe2+)SiO3 + Ca(Mg,Fe2+)Si2O6 +
NaAlSi3O8
+ Ca(Al2Si2O8) + H2O ⇌
NaCa2(Mg,Fe)4Al(Al2O6)O22(OH)2 +
4SiO2
This reaction represents metamorphic reactions between the granulite and amphibolite facies
(DHZ 2A p139).
ferro-actinolite to
hedenbergite,
grunerite, quartz and H2O
7Ca2Fe2+5Si8O22(OH)2 →
14CaFe2+Si2O6 +
3Fe2+2Fe2+5 Si8O22(OH)2 +
4SiO2 + 4H2O
In some calc-silicate rocks hedenbergite is the product of metamorphism of
iron-rich sediments, probably due to the instability of ferro-actinolite with rising temperature. The association of
hedenbergite and
grunerite has been widely described, and its formation may be due to the
above reaction
(DHZ 2A p273).
ferro-actinolite, calcite and
quartz to hedenbergite, CO2 and H2O
Ca2Fe2+5Si8O22(OH)2 + 3CaCO3 +
2SiO2 ⇌ 5CaFe2+Si2O6 + 3CO2 + H2O
In some calc-silicate rocks hedenbergite is the product of metamorphism of
iron-rich sediments, according to the above reaction, probably due to the instability of ferro-actinolite with
rising temperature
(DHZ 2A p273).
hematite,
wüstite, quartz and
calcite to andradite, hedenbergite
and
magnetite
2Fe2O3 + 2FeO + 5SiO2 + 4CaCO3 →
Ca3Fe3+2(SiO4)3 + CaFe2+Si2O6
+Fe2+Fe3+2O4
+4CO2
titanomagnetite (ilmenite combined with
magnetite),
quartz, and
aegirine-hedenbergite to
aenigmatite, hedenbergite,
magnetite and O2
6(Fe2+Ti4+O3 + Fe2+Fe3+2O4) +
12SiO2 + 12(NaFe3+Si2O6 + CaFe2+Si2O6)
⇌
3Na4[Fe2+10Ti2]O4[Si12O36] +
12CaFe2+Si2O6 + 2Fe2+Fe3+2O4 +
5O2
(DHZ 2A p652)
Back to Minerals